1. Elevamento a potenza

Potenza di un numero naturale

Una somma di addendi tutti uguali si può scrivere come una moltiplicazione:

$$6 + 6 + 6 = 6 \times 3$$

Un prodotto di fattori tutti uguali si può scrivere così:

$$6 \times 6 \times 6 = 6^3$$

esponente
$$\begin{array}{c}
6^3 = 216 \longrightarrow \text{valore della potenza} \\
\text{base}
\end{array}$$

Questa operazione si chiama elevamento a potenza o potenza.

Ogni potenza rappresenta una moltiplicazione di tanti fattori uguali alla base quanti ne indica l'esponente.

Il simbolo **6**³ si chiama **potenza di base 6 ed esponente 3** e si legge *sei* elevato alla terza o più semplicemente *sei alla terza*.

ATTENZIONE

$$6^3 \neq 3^6 \quad 4^5 \neq 5^4$$

La **base** indica il fattore che si ripete nella moltiplicazione e l'**esponente** indica quanti sono i fattori di questo prodotto.

L'elevamento a potenza è l'operazione aritmetica che associa a due numeri, **a** (base) ed **n** (esponente), un terzo numero che si ottiene moltiplicando la base per se stessa tante volte quante sono le unità dell'esponente:

$$a^n = \underbrace{a \times a \times ...}_{n \text{ fattori}} a$$
 $n, a \in \mathbb{N}$ $n > 1$

aⁿ si legge "a elevato n" oppure "a alla n"

L'elevamento a potenza è una particolare moltiplicazione quindi è un'operazione interna all'insieme **N**.

ESEMPI

$$2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 64$$
 si legge due alla sesta
 $5^3 = 5 \times 5 \times 5 = 125$ si legge cinque alla terza

Potenza di un numero decimale

Per elevare a potenza un numero decimale applichiamo la precedente regola:

$$1,5^3 = 1,5 \times 1,5 \times 1,5$$

Il valore di 1,5³ si può calcolare applicando la sequente **regola pratica**:

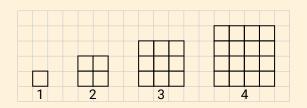
- eliminare la virgola ottenendo un numero naturale: 15
- elevare a potenza il numero ottenuto: $15^3 = 3375$
- separare, a partire da destra, tante cifre decimali quante sono quelle della base moltiplicate per l'esponente:
 - 1 (cifra decimale) x 3 (esponente) = 3 cifre decimali:

$$1,5^3 = 3,375$$

Quadrati e cubi

Consideriamo il disegno riportato di seguito. Ogni quadrato è ottenuto dal precedente aumentando di 1 quadretto la misura del lato.

Possiamo calcolare l'area dei vari quadrati contando i quadretti oppure moltiplicando la misura della base per sé stessa.

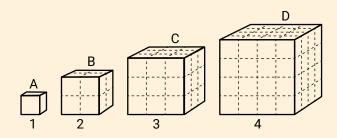


Misura del lato	1	2	3	4
Numero quadretti	1 × 1	2 × 2	3 × 3	4 × 4
Area	1 ²	2 ²	3 ²	4 ²

La potenza di un numero con esponente 2 viene anche detta quadrato del numero.

Nel disegno riportato sotto possiamo osservare che il cubo B ha un volume pari a 8 volte quello di A.

volume cubo = spigolo × spigolo × spigolo



Misura spigolo	1	2	3	4
Numero cubetti	$1 \times 1 \times 1$	2 × 2 × 2	3 × 3 × 3	4 × 4 × 4
Volume	1 ³	23	3 ³	4 ³

La potenza di un numero con esponente 3 viene anche detta cubo del numero.

I **quadrati perfetti** sono i numeri naturali ottenuti elevando al quadrato un altro numero naturale.

I **cubi perfetti** sono i numeri naturali ottenuti elevando al cubo un altro numero naturale.

Uso delle tavole numeriche

Per calcolare velocemente il valore di una potenza senza procedere con la moltiplicazione si possono utilizzare le **tavole numeriche**, di cui a fianco riportiamo un piccolo stralcio. Nella prima colonna (\mathbf{n}) sono riportati i numeri naturali, nella seconda colonna (\mathbf{n}^2) i quadrati relativi e nella terza colonna (\mathbf{n}^3) i corrispondenti cubi.

n	n²	n^3
1	1	1
2	4	8
3	9	27
4	16	64
5	25	125
6	36	216
7	49	343
8	64	512
9	81	729
10	100	1000
11	121	1 331

ESEMPI

- •Il valore di 8^3 si troverà all'incrocio della riga relativa all'8 con la colonna n^3 : 512. 512 è un cubo perfetto.
- •Il valore 216, che si trova all'incrocio della riga relativa al 6 e della colonna n^3 , corrisponde invece a 6^3 .